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Abstract—Recognition of human activities is essential for 

many applications, and the widespread availability of low-cost 

sensors on smartphones and wearables has enabled the 

development of mobile apps capable of tracking user activities 
"in the wild." However, dealing with heterogeneous data from 

different devices and real-time scenarios presents significant 

challenges. In this study, a novel learning framework is 

proposed for Human Acti vity Recognition (HAR) that 

combines a Convolutional Neural Network (CNN) with an 
autoencoder for feature extraction. The study also investigates 

the importance of preprocessing techniques, including 

orientation-independent transformation, to mitigate 

heterogeneity when dealing with multiple types of 

smartphones. The results show that the proposed approach 
outperforms state-of-the-art methods in HAR, with an 

accuracy of 95.74% on the heterogeneous dataset used in this 

study. Furthermore, the study demonstrates that proposed 

framework can be effectively deployed on smartphones with 

limited computational resources, making it suitable for real -

world applications. 

Keywords—Mobile Sensing, Human Activity Recognition, 

Convolutional Neural Networks, Autoencoders 

I. INTRODUCTION  

Recognition of daily human activ ity is essential for many 

applications: healthcare monitoring, security concerns, 

fitness tracking, and user-adaptive systems. 
     W ith the wide spread of low-cost sensors on smartphones 

and wearables, the development of mobile  apps capable of 
tracking user activities "in the wild" leads to relevant 

challenges that need to be tackled. As stated in [1], many 
variables come from users and smartphones. Users are 

demographically different (age, stature, weight) and perform 

activities differently with their style. Devices instead share 
among the other operating systems, hardware, and sensing 

capabilities. 
      This study starts with the model proposed in [2], showing 

how the controlled environment influences the classification. 
In particular, no heterogeneity among devices (and sensors) 

leads to biased data and non-natural settings. For this reason, 
the dataset provided in [3] is adopted, which emphasizes 

device heterogeneity. This study further investigates the 

effectiveness of statistical and manual-engineered features, 
which are usually insufficient in natural settings due to the 

heterogeneous scenario. Moreover, the effects of orientation-
independent transformation are examined as a preprocessing 

data block, which should make data agnostic regarding 
sensor position and orientation. With this work, 

heterogeneity impairments in actual use case scenarios are 

analyzed using previous state-of-the-art models and propose 
a novel learning framework to tackle HAR impairments in 

these situations. Proposed framework will be made by a 

CNN architecture augmented with features extracted from an 

autoencoder, with an eye on mobile portability [4]. 
Ultimately, the proposed results are compared with state-of-

the-art works [5]. 
 

     The main contributions can be summarized as follows: 

 This research work proposes an architecture that 
combines CNN and automatic feature ext raction to 

perform HAR. In particular, augmenting a traditional 
CNN model with an autoencoder rather than manual 

features can lead to better results. 

 In this study, the importance of an excellent 

preprocessing pipeline to mit igate heterogeneity 
when dealing with multip le types of smartphones  are 

examined. Also, orientation-independent 

transformation can give promising results in actual 
use case scenarios where smartphones can be in any 

position and orientation. 

 This study shows that good results can also be 

obtained w.r.t. state-of-the-art works when few 
computational resources are available, i.e., 

smartphones. 

This research work is structured as follows. Section II 

describes the state-of-the-art; the system and data models are 

respectively presented in Sections III and IV. The proposed 
signal processing technique is detailed in Section V, and its 

performance evaluation is carried out in Section VI. 
Concluding remarks are provided in Section VII. 

II. RELATED WORKS 

HAR using smartphone accelerometer and gyroscope 

data has been well studied in the literature. Many research 
work tackles this problem using machine learning or deep 

learning techniques. For example, in [6], K. Frank et al. 
proposed a set of handcrafted features combined with 

machine learning techniques such as SVMs, artificial neural 

networks, decision trees, and Bayesian approaches to 
perform the final classification. D. Anguita et al. [7] made 

the popular UCI dataset [8] and achieved the best results 
using 561 hand-designed features and various classifiers on 

top of them. 

Other state-of-the-art models, instead, use automatic 

feature extraction methods to avoid manually designed 

features. In [2] A., Ignativ's use of neural networks has 
allowed them to extract precise and concise information from 

a time series. Also investigates the impact of time series 
length on recognition accuracy. The accuracy of the 

proposed approach is evaluated on two commonly used 
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datasets: the UCI [8] and WISDM [9] datasets. This model 

provides reliable and accurate results. It performs well and is 
quick to use. There is no need for tedious manual editing or 

tricky setup, so that it can be put to work immediately. 

However, the works presented up to this point, as well as 
the majority of works available in the literature, evaluate 

Fig. 1. Our proposed signal processing pipeline & learning strategy

model performances in controlled environments with 

acquired datasets, such as UCI and WISDM, without 

considering the HAR model impairments when used in real-
world scenarios, like mobile apps. As stated in a recent work 

by K. Chen et al. [10], the problem is severe. The authors 
analyze the main HAR challenges, such as recognizing 

concurrent and composite activities, dealing with sparsely 
annotated data, class imbalance, sparsely user-distributed 

datasets, privacy, computational cost, etc. A. Stisen et al. in 
[3] studied the technical details and problems due to 

heterogeneity among users, sensors, and environments. They 

acquired a specific dataset that shows these heterogeneities 
and studied the impact on models. Also, they proposed 

various clustering and classification algorithms to perform 
HAR in  these conditions. In [11], Y. Vaizman  et al. acquired 

a huge in-the-wild dataset to promote practical applications 
that work in real-life settings. They collected the so-called 

Extrasensory dataset [12], composed of over 300,000 

minutes of sensor data with context  labels from 60 subjects 
who used their smartphones conveniently. They demonstrate 

the importance of fusion multi-modal sensors in resolving 
the in-the-wild HAR problem. However, they used more 

sensor signals, like magnetometer, compass, GPS, audio, and 
phone state, in which we were not interested. 

      Furthermore, most collected data has incorrect context 

labels because users aren't always precise when labeling 
data, which could lower the proposed model's performance 

metrics. 

III. PROCESSING PIPELINE 

As reported in [3], three major types of heterogeneities yield 

impairment in HAR: 

 

 Sensor Biases (SB): To keep the overall cost of a 
smartphone low, cheap accelerometer and gyroscope 

sensors are used, yielding poor-calibrated, 

inaccurate, and range/granularity-limited acquired 
signals. We could observe low precision, resolution, 

range, and biases. 

 Sampling Rate Heterogeneity (SRH): Often, 

popular smartphones vary in default and supported 

sampling frequencies for accelerometer and 
gyroscope sensors. For example, in the dataset 

proposed in [3], the sampling frequency varies from 
50Hz to 200Hz. 

 Sampling Rate Instability (SRI) : Th is phenomenon 

is specific to a single device and regards the 

regularity of the time span between successive 
measurements. Different factors could accentuate 

this problem, including heavy multitasking or high     

I/O load in the mobile device. In particular,  

multitasking operations affect the sensor sampling rate 

because smartphones prioritize various running tasks. 
For example, in our collected dataset with a 100 Hz 

sampling rate (which means a time span between 
consecutive samples of 10ms), we observe a period 

ranging mainly be- tween 3ms and 15ms with an average 
of 7ms, even if the smartphone was in an airplane mode 

to reduce at a min imum this effect. Fig. 2 shows the 

amount of different time- spans between consecutive 
measurements in our dataset. 

 

Fig. 2. Histogram of the different time span between consecutive samples 
included in our collected dataset  

Furthermore, in a real use-case scenario, we must also 
consider that smartphones can be positioned and oriented 

differently in the human body. For example, a smartphone 
could lay in trouser pockets (back and front) or maybe inside 

a pouch or a bag with different orientations. These different 
problem settings have huge effects on the prediction 

accuracy of a HAR predictor, especially if the model has 
been trained on a dataset consisting of activity measurement 

from one fixed position and orientation, as is usually the case 

in publicly available datasets. 
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We adopted three main preprocessing blocks in our 

pipeline to tackle all these problems, as shown in Fig.1 

 The first block, Linear Interpolator, mit igates the 

problems regarding the previously discussed SRH and SRI 
heterogeneity. Its primary purpose is to down-sample the 

input data to a fixed sampling rate, in our case, 50 
samples/second equally spaced in time. 

The second block, Orientation Independent 

Transformation (OIT), represents data from different 
smartphone orientations in a new space whose orientation is 

independent of the smartphone and aligned with gravity and 
the direction of motion. In this way, a user can place his 

smartphone in whatever position they want, mitigating the 
problem of different position and rotations of the 

smartphone, as we will see in Sec VI. 

Our last block consists of a data-centering operation that 

centers the signal among the y-axis and is used only as input 

for the Convolutional Layer. The reason for this choice is 
apparent in Sec. VI. As reported in [2], time series centering 

standardizes the input data, making the task for CNN easier. 
Data normalization must be avoided because it does not help 

since it significantly distorts time series shape, removing 
magnitude information critical for activities differentiation. 

After the preprocessing pipeline, we adopt a novel 

learning framework. It is composed of CNN augmented with 
features coming from the code of an autoencoder. As 

discussed in [2] CNNs learns filters that are applied to small 
sub-regions of the data, and therefore they can capture local 

data pattern and their variations. Additionally, due to a small 
number of connections and high parallelis m, the amount of 

computations and running time of CNNs is significantly 

lower compared to another deep learning algorithm. Such a 
model is perfect for real-time HAR applications, even in a 

constrained environment like s martphones. The only 
drawback of CCNs is that they fall behind in capturing the 

global properties of the signal. In [2], authors resolve this 
problem by augmenting CNNs with basic statistical features. 

But instead of what was done in this latter work, where they 
used a few hand-made parts, we decided to opt for 

automatically extracted features. These are created by an 

autoencoder which should provide a more robust 
representation of information. As an implication, we can 

train the autoencoder separately and then use the trained 
model in combination with CNN. 

IV. SIGNALS AND FEATURES 

A. Dataset & Measurement Setup 

Many datasets are available for this type of application in 

literature: [8], [9], [12], [13]. However, there are nontrivial 
problems in real-world applications: above all, the 

environment is not controlled. So we should be capable of 
dealing with technical details such as smartphone orientation 

or sensor accuracy, as reported in Sec. III. 

 For our application, we decided to use the Heterogeneity 
Dataset (HD) [13] described in [3], where data are collected 

directly from smartphone sensors. The dataset is composed 
of nine users (aged 25-30). All of these users followed a 

scripting set of activities. They d id sit, stand, walk, bike, and 
stairs up/down while carrying eight smartphones. All eight 

phones were placed in a pouch and worn around the waist. 

For this study, we had ten people undergo two sessions—one 
in a lab with all four devices and one at home with only the 

phone. In our case, we were interested only in smartphone-

acquired signals, leaving out from our experiments the 
smartwatch evaluations.  

We also collected a novel dataset called Oriented Dataset 
(OD). This new dataset aims to see whether the model can 

generalize well on new unseen users and test how OIT 
preprocessing could increase performance in this new 

context. This dataset is collected with a single smartphone, at 

a sampling rate of 100 Hz in  seven different positions: top, 
bottom, left, and right are contained in the same way as in 

work [3], but instead of a fixed orientation, we rotated the 
smartphone inside the pouch to each possible direction. Then 

we also perform the same activities with the smartphone held 
in hand and in the trouser's pocket to see to what extent the 

model can generalize activity recognition in new unseen 
positions. In this case, we condensed sit and stand activities 

into no activity for two reasons: first, we are not interested in 

distinguishing between them, and second, they are made 
indistinguishable by OIT.  

B. Signal preprocessing 

Notation:  With x ∈ IRn, we define a column vector as  

x=(x1, x2 ,x3  ,..., xn)
T

 Where with                we mean 

the transpose operator. With ||x||, we mean the L2-norm 
operator ||x|| =   ∑   

   
        ,             ∑   

 
    ⁄  the 

mean of a vector.  With  x・ y = x
T
 y, we mean the 

inner product  of two vectors. With   ⃗   We me a n a  3 D  

ve ctor   ⃗ =(x1 , x2 , x3)
T

   a nd wi th  ̂ the cor r esp on ding  3 D  
ve rsor  ̂   ⃗    ⃗  . For  any  two  3 D v e ctors ,  ⃗  and   ⃗. We  
indic ate th ei r cr oss- pr od u ct  as  ⃗     ×  ⃗. We represent with ax, 

ay  and az the x, y, and z components of the accelerometer 

signal, and the gyroscope signal is  represented with gx, 
gy, and gz . We also define matrices with uppercase and 

bold letters. For example, to define a 3 × n matrix 
composed of 3 vectors x, y, z ∈ IR

n
 , we use the 

notation M = [x, y, z]
T
 

Linear Interpolation & Down-sampling. As described 
in Sec. IV-A, our dataset is composed of signals collected 

with different sampling rates from many mobile phones, and 
they are usually out of sync due to the SRI. For this reason, 

we apply to all signals a simple preprocessing pipeline block 

composed of two steps: linear interpolation and down-
sampling. W ith linear interpolation, we project  signals with 

different sampling frequencies, i.e., 50, 100, and 200 Hz, to a 
50 Hz signal, which  means we are also applying at the same 

time down-sampling. Linear/nearest interpolations are 
usually preferred w.r.t. cub ic spline o r s mooth cubic 

spline, as investigated in [3], because they typ ically 

mit igate the introduct ion of no ise o r art ifacts. In linear 
interpo lat ion, the value at t ime t is the piecewise-linear 

interpolation, i.e., the linear interpolation between  the input 
samples ad jacent to t in the sequence o f input sample 

timestamps. Let (x0, y0) and (x1, y1) be two  known points; the 
linear interpolant is the straight line between these points. For 

a value x in the interval (x0, x1), the value y along the 
straight line is given from the equation of slopes 


    

    
 

     

     


The linear interpolation on a   set of data points (x0, y0), 
(x1, y1), . . . , (xn, yn) is defined as the concatenation of linear 

interpolants between each pair of data points. 
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Orientation Independent Transformation. To  project 

the signals acquired during an activity in a new space 
independent of the rotation of the smartphone, three 

orthogonal versors need to be found. We decided to adopt 
the technique proposed in [14], although many other works 

offered a similar solution as in [15], [16]. In summary, we 
must find these three orthogonal versors: vertical  ̂ , 

horizontal  ̂, and lateral  ̂. As the names suggest, the vertical 
versor is aligned with the user's torso, pointing up; the 

horizontal versor is aligned with the direction of motion, 
pointing forward; and the last versor tracks lateral 

movements, which is orthogonal to the other two. 

Starting with the vertical versor, we need to find where 
the gravity vector  p⃗  lie in the original space. Although the 

gravity vector is constant in stationary conditions, during a 

user activity, it continuously changes in the original 
coordinate system of the smartphone. Therefore, we can only 

consider the gravity's mean direction within the current user 
activity. So, to estimate it, we must consider only the 

accelerometer signal:   p⃗  = (āx , āy , ā z )
T

, and we now 

could find the vertical versor with  ̂= p⃗/||p⃗||. 

This is the first axis of our new space, and we can project 
dates onto this new versor to obtain our first component axis. 

To do that, we define the acceleration matrix A = 
           and the gyroscope matrix G =           

 . 

Now  we  could  project  the  data  onto   ̂  by: 

    = A ̂  ,  gv  = G ·  ̂                   (2)                                                                                              

Now we have to find a horizontal plane parallel to the 

floor, where the activity motion main ly occurs. We must 
remove the av component from the original data to do so. We 

represent the accelerometer data on this new plane as M 

representing the motion plane. To find M, we have to:  

M  = A- ̂  
  

In this new plane, we could see that the direction with the 

most significant variance of projected data represents the 
main direction of motion, i.e., In that direction, the user is 

currently performing the activity w.r.t the current smartphone 
orientation. By applying PCA [17], we can find the path 

along which the variance of measurements is maximized. 
This is the horizontal vector h. We now could compute  the  

horizontal  versor  ̂ =  ⃗⃗    ⃗⃗   ,  and  we  are  now able to 

project our data onto this second new axis: 

   = A ·  ̂  ,   = G ·  ̂                       (3)  

                                                
Applying a cross-product between the two last obtained 

versors is sufficient to find the last axis , so  ̂  =  ̂ ×  ̂. We 

are now able to project the data among this new axis: 

  = A ·  ̂  ,    = G ·  ̂                    (4) 

                                                                

Combining Eq. (2), Eq. (3), and Eq. (4) leads us to the 

final accelerometer and gyroscope transformed signals 
represented in this new orientation-independent space, which 

are           
 and           

  

Centering. Our last signal preprocessing block involves 
data centering. As proved in [2], this could slightly improve 

performance within a CNN-based learning model because 
centering the time series makes the task easier for the CNN. 

We denote with xc the centered vector of x, i.e 

x
c
 = x − x̄ = (x1 − x̄, x2 − x̄, ..., xn − x̄)

T
 

         
(5)

  

   
Centering is applied for each time window only on 

accelerometer data. Thus the new centered acceleration 

matrix is: 

  = [  
    

    
  ]

T
                  (6) 

C.        
 Feature vector 

Time windows. When dealing with time-based signals (or 

time series in general), we must remember that correlation 
between samples occurs and handle this helpful information. 

However, in the domain of HAR, even if samples can be 
correlated in time, the correlation does not persist over a long 

period. In literature, many time window intervals were 

experimented with [2], and they discovered that the best time 
window interval is from 1s to 2.5s. For this reason, we adopt 

a sliding window approach with a fixed window length of 
2.5s and a 50% overlap between two successive windows. 

                  

 

Fig. 3. In our proposed learning framework, CL1 is a convolutional-1D 

layer, ML1 is a max-pooling layer, FL1 is the fully connected layer which 
represents previously extracted features that are concatenated with the 
autoencoder features, FL2 and FL3 are thoroughly combined layers 

Features . Features are the essential elements every 
machine learning algorithm needs to learn something. 

Everything fed into a machine learning algorithm can be 
considered a feature, but here we use three types of features 

targeting different kinds of information. 

 Raw features. These enable the model to learn 

directly from data and hopefully from its shape to 

generalize and classify activities. Raw features are 
represented by a 6x125 matrix where rows are 

accelerometer and gyroscope x, y, and z dimensions 

while columns are samples over time. 

 Manual features. Manual features take into account 

the statistical mode of the signal and are used in 
[2] and[7] with excellent results. We exploit manual 

parts like mean, standard deviation, a sum of the 
absolute values, and the histogram of each input data 

channel computed on local time windows applied 

only for an accelerometer signal a. As defined  in  
[2], we produce a p rimary featu re vector:                                                                              

  =   ̅   ̅   ̅          
    

  ̃   ̃   ̃  , 

       
,    

     
 ,    

  Where for a generic 

column vector x =                  with   = 

   
    

    
       

    :  

   √
∑  |  

 |  
   

 
                           (7)                                                                

 ̃  
∑  |  

 |  
   

 
                             (8)                                                        
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∑ √  

    
    

  
   

 
                 (9) 

And hx is a column vector that sorts the values of x into ten 
equally spaced bins along the x-axis between the minimum 

and maximum values of x1 . This led to a manual features 

vector of 40 manually extracted features. 

 Autoencoder features. Autoencoder features are 

automatically ext racted from the signal—the 

autoencoder, as described in Sec. V-A can compress 
data and learn a good representation of features 

keeping only exciting data. The code size we use is 
made up of 36 features. 

V. LEARNING FRAMEWORK 

A. Autoencoder 

In this section, we describe the autoencoder model 

based on [18], [19], and [20]. An autoencoder is an 
artificial neural network used to learn efficient data coding in 

an unsupervised manner. An autoencoder aims to learn a 
representation (encoding) for a data set by training the 

network to ignore signal noise. Given 

X=                   
  As     a 6x125 matrix  

 
 

Fig. 4. (Auto)-encoder structure 

and x as the column vector 750x1 obtained by flattening X, 

we can define the autoencoder in two blocks. The first block 
is the encoder which is a function of the input: 

  ( )  σ(     (x)+   )                          (10)                                                          

   (x)=ReLU(  x+  )                            (11)                                                                      

Where    is a vector of    and    Which are the weight 
matrix and the bias vector for layer i. We can derive y =    

(x) as the output of this block. The second block is the 
decoder, where the input is reconstructed back starting from 

the code obtained by the encoder 

  (y)  σ(     (y)+                           (12)                                                          

   (y)=ReLU(  y+  )                         (13)                                                    

T us,   e reco s ruc e    pu   s z   gθ(y). We       o 

minimize the distance between x and z w.r.t, a distance 
measure with a loss function like MSE. 

The main goal of the autoencoder for this application is 
to extract valuable representations of the input signal in a 

few features, and this is done by looking at the autoencoder's 

code, i.e., the output of the encoder block: 

Φe   y                                           (14)                                                                               

The autoencoder follows the structure reported in Fig. 4 
and is based on a Neural Network architecture. The encoder 

is built with an input layer of 6x125 neurons flattened into a 
vector 750x1, one hidden layer with 150 neurons and ReLU 

activation function, and an output layer, i.e., the code, of 36 

neurons with a sigmoid activation function. The decoder 
replicates the exact structure of the encoder but is reversed, 

where the activation function on the output layers is the 
linear activation, i.e., the identity. 

B. Convolutional Neural Network 

The final CNN architecture proposed in this work is 

shown in Fig. 3. We decided to start with the architecture 
presented in a position [2]. We tried to improve it by 

augmenting the CNN with the encoder-extracted features. 
CNN architecture is compelling when dealing with images, 

but they were proven to be good feature extractors for 

motion data. A CNN is composed of essentially two parts: 
the first one is in charge of extracting features performing a 

dimensionality reduction over the input data through a series 
of convolution and max pooling layers, and the second part 

of the CNN is responsible for giv ing the final c lassification 
with usually a single fully-connected layer. Orig inal data 

collected from smartphone sensors are preprocessed 
accordingly to what was previously described in Sec. III. Our 

input matrix presented to our CNN is the matrix 

X=    
    

    
    

    
    

   Formed by accelerometer 

and gyroscopes signals, linearly interpolated at 50 
samples/second per channel, with a fixed time window of 

2.5s, with OIT and data centering. Note that this matrix has a 
dimension n × 6 because TensorFlow Convolutional 1D 

Layers work with input dimension of (batch_size, samples, 

channel). 

In detail we have the following stacked 

layers(CL=Convolutional Layer, ML=Max-pooling Layer, 
FL= Fully-connected Layer): 

    CL1: The first convolutional layer performs a 

Convolution 1D over the input signal. It is composed of 

196 filters of s ize (1×16). Since convolution is defined  

over all the input channels, we also capture the relation 

between accelerometer and gyroscope signals in this  

layer. The stride is set to 1, and the padding is  

co f gure   s “s me” to have the same output dimension 

as the original one. After the convolution operation, we 

apply a ReLU (x) = max(0 , x) activation function to 

learn the non-linear correlation between signals and 

extract richer features. Furthermore, even if we are 

dealing with a small architecture, the ReLU activation 

function could prevent vanishing gradient problems, is  

less prone to overfitting since it induces the sparsity in the 

hidden units, and is extremely fast to compute, making it 

perfect  when dealing with low computational resources  

[2]. 

 ML1 : After the convolutional layer, a max-pooling 

or average-pooling layer is usually applied to reduce 
and summarize the obtained representation. We 

decided to use a max-pooling layer of size (1 × 4), 
decreasing by four times the original input shape. 

We c ll    s  e  fe  ures represe     o       Φc. 
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 FL1: After the convolutional layer and the max-

pooling layer, the output of this layer is flattened into 
6272 neurons. At this stage, we decided to 

co c  e   e   e e co er e  r c e  fe  ures Φc       

  e Co volu  o  l o es   me  Φc, cre    g our 

exclusive features vec or Φ             that is 

presented to the final fully- connected layers to 
perform the classification. 

 FL2-3: These final layers comprises 64 and 6 dense 
neurons, respectively. These two last layers are used 

to perform the classification of the activity. For the 
FC2, we use the ReLU activation function, and for 

the final category, we apply the soft-max activation 

function, which computes probability distribution 
over the predicted classes. 

As for optimization techniques, we decided to use 
dropout and   -regularizat ion. These latter techniques are 

commonly used in these architectures, yielding better 

performance in the test set and commonly in generalization 
capabilities, preventing overfitting. We apply a dropout rate 

of 0.05 and an   -regularization of 5    to the FL2 layer. We 
have tried different hyperparameter values for these two 

techniques without substantial changes in classification 
performance on the test set. Finally, the network parameters 

are optimized using Adam: a modification of stochastic 
gradient descent incorporating Momentum. Finally, the 

network is trained to min imize the Categorical cross -entropy 
loss function. 

VI. RESULT  

A. Heterogeneity Dataset (HD) 

In this section, we evaluate performances between 

previous works and different model architectures and the 
influences of the preprocessing techniques applied here. 

Similar to what was done in [2], we carried  out from the HD 

dataset some representative users to test the model and then 
used the remaining ones to train the model. In this case, we 

selected users a and b since we found that they are very 
representative of all others. The proposed models tend to be 

less precise with user a and more accurate with user b. This 
mainly depends on the user's style in walking, doing stairs, 

and so on. This way, we can compare results with other 

works that evaluate unseen users' performances. 

In this training and test set settings, we evaluate the best 

hyper-parameters and results for the models, excluding OIT 
preprocessing block, since this dataset was collected with a 

fixed  orientation. sit and stand activities are included. The 
rest of preprocessing blocks are enabled unless otherwise 

specified. 

TABLE I.  HD CLASSIFICATION RESULTS WITH DIFFERENT 

FEATURES OF CNN AUGMENTATION AND DATA PREPROCESSING. T HE 

T ESTS ARE MADE WITH OUR PROPOSED ARCHITECTURE, LINEAR 

INTERPOLATION AND DATA CENTERING, 196 (1X16) FILTERS, MAX-POOL 

(1X4), 64 FULLY CONNECTED NEURONS, A DROPOUT RATE OF 0.05, L2-
REGULARIZATION OF 5E−5 AND ADAM LEARNING RATE OF 2E−5.   

Method Accuracy Precision Recall  F1-

Score  
CNN+No 
centering 

77.0 78.0 75.8 76.8 

CNN+No 
centering+ Manual 
F. 

75.6 76.8 73.9 75.3 

CNN+centering+ 86.2 86.9 70.2 77.6 

Manual F. 

CNN+No 
centering+ 

Encoder  F. 

89.2 88.9 86.1 86.1 

       

      Autoencoder. We performed a grid search to search for 

the best autoencoder model hyper-parameters. Results are 
reported in Tab. II, where values that perform well on the 

validation dataset are written in bold. The best hyper-
parameters model used to be the one with a relatively small 

code size: from 24 to 36 features which is also a good thing 

as we do not want the autoencoder to learn the identity but 
only to keep useful information. In these settings , we get an 

MSE of 0.87. 

TABLE II.  GRID-SEARCH FOR BEST HYPER-PARAMETERS ON 

AUTOENCODER 

Hyper-Parameter Values 

Code size 
 
Batch size 
epochs 

{2,3,4,5,6,12,18,24,30,36,42,48,54,60, 
72} 
{32,128)} 
{150,200} 

 

Even if the primary goal for this autoencoder is to 

automatically extract features from the signal for the direct 
CNN model, we also implement two simple classifiers to use 

the autoencoder's feature and check their effectiveness 
directly. 

The first is a K-Nearest Neighbors (KNN) clustering 
algorithm, and we perform clustering on the encoder's code. 

The idea is that the autoencoder should extract relevant 
features that may be similar class by class. We fine-tuned 

KNN parameters with a grid search, looking for the best 

values of distance measure and several neighbors. Tab. III 
shows the values. We select the Euclidean distance measure 

and five as the number of neighbors. In this case, we 
obtained an accuracy of 76.2%. From the grid search on 

KNN, we surprisingly noticed that performances do not vary 
significantly among different hyper-parameters: most results 

are less than 5%, far from the best. This may indicate the 

maximum capability of this autoencoder model, so to obtain 
better performances, we have to add complexity to the 

model. 

TABLE III.  GRID-SEARCH FOR KNN CLASSIFIER 

  Hyper-parameter    Values 
Distance measure 

 
Number of  Neighbors 

{euclidean, manhattan, chevy- 

shev, Minkowski, standardized 
euclidean, mahalanobis} 

{4,5,6,7,8} 

    

      The second classifier instead is based on a Feed Forward 

Neural Network (FFNN). The simple architecture consists of 
two dense layers of 100 neurons, each with 0.1 dropouts , and 

a ReLU activation function. At the same time, the last is a 
thick layer with several neurons equal to the number of 

classes and soft-max activation function. The network is 

trained with Adam optimizer to minimize the categorical 
cross-entropy loss function. In this case, we obtained an 

accuracy of 81.8%. 
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CNN Network. We first test how several convolutional 

filters and dense neurons in CL1 and FL2 will influence 

classification performances with data centering and 

manually extracted features. The results are presented in 

Tab. IV We ch ose 19 6 co nvolut ional  fil ters  and 6 4 de nse  

neurons thanks to its balance between accuracy and F1-

Score performances, obtaining 86.2% and 77.6%, 

respectively.  

To better appreciate how our preprocessing blocks affect 

overall model performances, we also try to disable or enable 

some of them. In Tab. I, we reported our obtained results 

from experiments. We see that augmenting the CNN with  

manually extracted feature when data are not centered leads 

to no significant change in performances; instead, the model 

obtained nearly 10% more accuracy and precision metrics 

when also enabling data centering preprocessing with 

manual features augmented CNN. This proves the benefits 

of data centering stated previously.  

TABLE IV.  HYPER-PARAMETERS SELECTION USING HD RESULTS 

WITH DATA CENTERING AND MANUAL FEATURES AUGMENTED CNN 

CNN Filters      FC2 Neurons     Accuracy        F1-Score        

196 1024 84.6 75.3 

196 512 86.1 75.7 
196 64 86.2 77.6 

96 1024 82.8 69.9 

96 512 84.4 73.7 
96 64 89.0 73.0 

48 1024 80.0 79.4 

48 512 83.7 74.9 

48 64 84.0 72.3 
 

However, We could not reach the same performances 
presented in [2], where the authors obtained an accuracy of 

97.6% in the same settings. These empirically confirm that 

the performances of state-of-the-art models trained with one 
type of sensor are worse when dealing with the heterogeneity 

of smartphone sensors. Moving on, augmenting the CNN 
with the encoder feature increments the model performances, 

meaning that encoder features are more robust than manual 
features, as exp lained previously. To compare our best 

results in this setting with the ones presented in [3], we 
decided to perform their Leave-one-user-out cross-validation 

evaluation, consisting of testing the model with data from 

one user and training with data from all the others in a cross -
validation fashion and then averaging the obtained results.  

 

 

Fig. 5. CNN confusion matrix 

      We obtained an average F1- score of 85.8% in  this 
evaluation set, beating their best model result of nearly 10% 

more in the F1-Score metric. This also proves that using 

users a and b to do our evaluation is a good compromise of 
the real Leave-one-user-out cross-validation evaluation 

performances, Since we obtain nearly the same results 
(90.2% instead of 89.2% in accuracy and 85.8% instead of 

86.1%), a confusion matrix in this latter setting is reported in 
Fig. 5. We could see that the model performs nicely overall 

in all the considered d activities, with some difficult ies 

distinguishing between stand and sit and walk  with stairs 
activities. 

B. Oriented Dataset (OD) 

With this newly collected dataset, we want to test our 

models' performance in an actual use case scenario, where 
smartphones could be placed in different positions and 

orientations. In this case, we trained the models with the 
entire HD training set and then used the OD as a test s et. It is 

important to remember that in this case, we apply OIT, so we 
condensed HD's sit and stand activities into a one class no 

activity category. 

TABLE V.  AUTOENCODER LOSS IN DIFFERENT SCENARIOS 

Scenario Loss(MSE) 
HD + OIT + OD validation  
HD + OIT + OD validation(allpos)  

HD + OD validation  

0.75 
0.82 

10.42 

 

Autoencoder. As Tab. V confirms, an excit ing result is 

that OIT is necessary when dealing with different 
orientations. For example, without OIT, we can see that the 

autoencoder trained and tested on the same data goes from 
0.75 to 10.42 MSE, which is more than ten times worse. 

Furthermore, hand or pocket-up/down data do not inflate the 

loss too much. This is good because it indicates that the 
autoencoder is producing robust features.  

Tab. VI and Tab. VII show KNN and FFNN evaluation 
for the best autoencoder with 36 features and the two 

classifiers with hyper-parameters selected in Sec. VI-A. 
These results indicate that KNN is more stable and not 

influenced by the sensor's position/orientation w.r.t. FFNN. 

Also, the two models preserve evaluation order: on pouch, 
the position gets the best results  on both models, while the 

worse position hand+pocket, as we expect. 
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TABLE VI.  KNN EVALUATION ONTO OD BETWEEN SMARTPHONE 

POSITIONS (POUCH LEFT/RIGHT/T OP /BACK, HAND AND POCKET-
UP /DOWN, ALL POSITIONS) 

Positions Accuracy Precision Recall  F1-score  

Pouch 80.1 86.4 80.7 79.0 

Hand+Pocket 79.5 83.7 79.5 79.6 

All 80.0 83.8 79.1 78.2 

TABLE VII.  FFNN EVALUATION ONTO OD BETWEEN SMARTPHONE 

POSITIONS (POUCH LEFT/RIGHT/T OP /BACK, HAND AND POCKET-
UP /DOWN, ALL POSITIONS) 

Positions Accuracy Precision Recall  F1-score  

Pouch 74.4 84.7 74.4 74.8 

Hand+Pocket 67.8 78.0 67.8 70.0 

All 69.9 81.3 69.9 72.4 

 

      CNN Network. Combin ing autoencoder features into the 
CNN, we were able to reach better performances w.r.t the 

simpler KNN and FFNN previously presented classifiers. For 
the hand+pocket new positions, we noticed a performance 

drop of nearly 15%, but given the complexity of this new 
unseen context, we are pretty satisfied with the obtained 

results. As Tab. 8 confirms, the final proposed learning 

strategy with smart data preprocessing led to good results 
even with new problem settings that nearly match real use 

case scenarios. We also tried to disable OIT in the CNN 
model, obtaining a drop in performances by almost 45% for 

all metrics considered. This demonstrates that OIT is an 
extremely useful preprocessing technique for autoencoder 

and CNN models. 

TABLE VIII.  CNN CLASSIFICATION COMPARISONS ONTO OD BETWEEN 

SMARTPHONE POSITIONS (POUCH LEFT/RIGHT/T OP /BACK, HAND AND 

POCKET-UP /DOWN, AND ALL POSITIONS). 

Positions Accuracy Precision Recall  F1-

Score  
Pouch 85.3 92.0 73.8 81.9 

Hand+Pocket 70.5 79.5 63.0 70.2 

All 78.0 84.0 69.0 75.7 

VII. CONCLUSION REMARKS 

This study presents "in-the-wild" HAR solution for 
mobile fitness apps. Dealing with considerable heterogeneity 

and real-world circumstances where a smartphone can be 
positioned and angled in any way is difficult. Linear 

interpolation, orientation-independent transformation, and 
data centering in a preprocessing pipeline can reduce HAR 

impairments caused by these difficulties. CNN was one of 

the most promising methods for HAR, using automatic 
feature extraction and classification. The proposed work 

outperforms the original Heterogeneity Dataset work by 
enhancing CNN with robust characteristics like the encoder 

part of an autoencoder. It is also shown also showed that an 
orientation-independent transform is necessary to deploy 

models trained with controlled datasets in real-world 

contexts with promising outcomes. 

In future studies, this model may be tested with a more 

demanding dataset that includes persons of varying weights, 
heights, nationalities, and activity paths . It might also be 

tested with people wearing different shoes and apparel. This 
work can also integrate with user locations like cars, buses, 

trains, planes, etc. This study has no opportunity  to test 

open-set categorization approaches, which reject unknown or 

unobserved behaviors. The proposed algorithm sought to 

predict learned behaviors even when the user was doing 
other things with his smartphone using a smartphone app. 

This research work has many issues, including poorly 
optimized NVIDIA Ubuntu OS drivers . Bad GPU memory 

management crashed the testing computer. When training the 
model with the same hyper-parameters numerous times, the 

pre-fetching TensorFlow dataset feature gives us extremely 

varied model metrics outcomes. After deactivating the 
option, the system delivered comparable results with the 

same hyperparameters. Replicating the existing findings 
from previous research works was tough because the 

outcomes didn't specify model hyper-parameters and training 
parameters. 
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