

Smartphone based Human Activity Recognition

using CNNs and Autoencoder Features
Sowmen Mitra

Department Of Computer Science And Technology

School Of Artificial Intelligence

Hebei University Of Technology

Beijing, China
sowmenmitra7@gmail.com

Proma Kanungoe

Department Of Information Technology

School Of Information Technology And Engineering

Vellore Institute Of Technology

Vellore, India
proma.kanungoe2018@vitalum.ac.in

Abstract—Recognition of human activities is essential for

many applications, and the widespread availability of low-cost

sensors on smartphones and wearables has enabled the

development of mobile apps capable of tracking user activities
"in the wild." However, dealing with heterogeneous data from

different devices and real-time scenarios presents significant

challenges. In this study, a novel learning framework is

proposed for Human Acti vity Recognition (HAR) that

combines a Convolutional Neural Network (CNN) with an
autoencoder for feature extraction. The study also investigates

the importance of preprocessing techniques, including

orientation-independent transformation, to mitigate

heterogeneity when dealing with multiple types of

smartphones. The results show that the proposed approach
outperforms state-of-the-art methods in HAR, with an

accuracy of 95.74% on the heterogeneous dataset used in this

study. Furthermore, the study demonstrates that proposed

framework can be effectively deployed on smartphones with

limited computational resources, making it suitable for real -

world applications.

Keywords—Mobile Sensing, Human Activity Recognition,

Convolutional Neural Networks, Autoencoders

I. INTRODUCTION

Recognition of daily human activ ity is essential for many

applications: healthcare monitoring, security concerns,

fitness tracking, and user-adaptive systems.
 W ith the wide spread of low-cost sensors on smartphones

and wearables, the development of mobile apps capable of
tracking user activities "in the wild" leads to relevant

challenges that need to be tackled. As stated in [1], many
variables come from users and smartphones. Users are

demographically different (age, stature, weight) and perform

activities differently with their style. Devices instead share
among the other operating systems, hardware, and sensing

capabilities.
 This study starts with the model proposed in [2], showing

how the controlled environment influences the classification.
In particular, no heterogeneity among devices (and sensors)

leads to biased data and non-natural settings. For this reason,
the dataset provided in [3] is adopted, which emphasizes

device heterogeneity. This study further investigates the

effectiveness of statistical and manual-engineered features,
which are usually insufficient in natural settings due to the

heterogeneous scenario. Moreover, the effects of orientation-
independent transformation are examined as a preprocessing

data block, which should make data agnostic regarding
sensor position and orientation. With this work,

heterogeneity impairments in actual use case scenarios are

analyzed using previous state-of-the-art models and propose
a novel learning framework to tackle HAR impairments in

these situations. Proposed framework will be made by a

CNN architecture augmented with features extracted from an

autoencoder, with an eye on mobile portability [4].
Ultimately, the proposed results are compared with state-of-

the-art works [5].

 The main contributions can be summarized as follows:

 This research work proposes an architecture that
combines CNN and automatic feature ext raction to

perform HAR. In particular, augmenting a traditional
CNN model with an autoencoder rather than manual

features can lead to better results.

 In this study, the importance of an excellent

preprocessing pipeline to mit igate heterogeneity
when dealing with multip le types of smartphones are

examined. Also, orientation-independent

transformation can give promising results in actual
use case scenarios where smartphones can be in any

position and orientation.

 This study shows that good results can also be

obtained w.r.t. state-of-the-art works when few
computational resources are available, i.e.,

smartphones.

This research work is structured as follows. Section II

describes the state-of-the-art; the system and data models are

respectively presented in Sections III and IV. The proposed
signal processing technique is detailed in Section V, and its

performance evaluation is carried out in Section VI.
Concluding remarks are provided in Section VII.

II. RELATED WORKS

HAR using smartphone accelerometer and gyroscope

data has been well studied in the literature. Many research
work tackles this problem using machine learning or deep

learning techniques. For example, in [6], K. Frank et al.
proposed a set of handcrafted features combined with

machine learning techniques such as SVMs, artificial neural

networks, decision trees, and Bayesian approaches to
perform the final classification. D. Anguita et al. [7] made

the popular UCI dataset [8] and achieved the best results
using 561 hand-designed features and various classifiers on

top of them.

Other state-of-the-art models, instead, use automatic

feature extraction methods to avoid manually designed

features. In [2] A., Ignativ's use of neural networks has
allowed them to extract precise and concise information from

a time series. Also investigates the impact of time series
length on recognition accuracy. The accuracy of the

proposed approach is evaluated on two commonly used

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 811

20
23

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 T

re
nd

s i
n

El
ec

tr
on

ic
s a

nd
 In

fo
rm

at
ic

s (
IC

O
EI

) |
 9

79
-8

-3
50

3-
97

28
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
O

EI
56

76
5.

20
23

.1
01

26
05

1

Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

datasets: the UCI [8] and WISDM [9] datasets. This model

provides reliable and accurate results. It performs well and is
quick to use. There is no need for tedious manual editing or

tricky setup, so that it can be put to work immediately.

However, the works presented up to this point, as well as
the majority of works available in the literature, evaluate

Fig. 1. Our proposed signal processing pipeline & learning strategy

model performances in controlled environments with

acquired datasets, such as UCI and WISDM, without

considering the HAR model impairments when used in real-
world scenarios, like mobile apps. As stated in a recent work

by K. Chen et al. [10], the problem is severe. The authors
analyze the main HAR challenges, such as recognizing

concurrent and composite activities, dealing with sparsely
annotated data, class imbalance, sparsely user-distributed

datasets, privacy, computational cost, etc. A. Stisen et al. in
[3] studied the technical details and problems due to

heterogeneity among users, sensors, and environments. They

acquired a specific dataset that shows these heterogeneities
and studied the impact on models. Also, they proposed

various clustering and classification algorithms to perform
HAR in these conditions. In [11], Y. Vaizman et al. acquired

a huge in-the-wild dataset to promote practical applications
that work in real-life settings. They collected the so-called

Extrasensory dataset [12], composed of over 300,000

minutes of sensor data with context labels from 60 subjects
who used their smartphones conveniently. They demonstrate

the importance of fusion multi-modal sensors in resolving
the in-the-wild HAR problem. However, they used more

sensor signals, like magnetometer, compass, GPS, audio, and
phone state, in which we were not interested.

 Furthermore, most collected data has incorrect context

labels because users aren't always precise when labeling
data, which could lower the proposed model's performance

metrics.

III. PROCESSING PIPELINE

As reported in [3], three major types of heterogeneities yield

impairment in HAR:

 Sensor Biases (SB): To keep the overall cost of a
smartphone low, cheap accelerometer and gyroscope

sensors are used, yielding poor-calibrated,

inaccurate, and range/granularity-limited acquired
signals. We could observe low precision, resolution,

range, and biases.

 Sampling Rate Heterogeneity (SRH): Often,

popular smartphones vary in default and supported

sampling frequencies for accelerometer and
gyroscope sensors. For example, in the dataset

proposed in [3], the sampling frequency varies from
50Hz to 200Hz.

 Sampling Rate Instability (SRI) : Th is phenomenon

is specific to a single device and regards the

regularity of the time span between successive
measurements. Different factors could accentuate

this problem, including heavy multitasking or high

I/O load in the mobile device. In particular,

multitasking operations affect the sensor sampling rate

because smartphones prioritize various running tasks.
For example, in our collected dataset with a 100 Hz

sampling rate (which means a time span between
consecutive samples of 10ms), we observe a period

ranging mainly be- tween 3ms and 15ms with an average
of 7ms, even if the smartphone was in an airplane mode

to reduce at a min imum this effect. Fig. 2 shows the

amount of different time- spans between consecutive
measurements in our dataset.

Fig. 2. Histogram of the different time span between consecutive samples
included in our collected dataset

Furthermore, in a real use-case scenario, we must also
consider that smartphones can be positioned and oriented

differently in the human body. For example, a smartphone
could lay in trouser pockets (back and front) or maybe inside

a pouch or a bag with different orientations. These different
problem settings have huge effects on the prediction

accuracy of a HAR predictor, especially if the model has
been trained on a dataset consisting of activity measurement

from one fixed position and orientation, as is usually the case

in publicly available datasets.

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 812
Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

We adopted three main preprocessing blocks in our

pipeline to tackle all these problems, as shown in Fig.1

 The first block, Linear Interpolator, mit igates the

problems regarding the previously discussed SRH and SRI
heterogeneity. Its primary purpose is to down-sample the

input data to a fixed sampling rate, in our case, 50
samples/second equally spaced in time.

The second block, Orientation Independent

Transformation (OIT), represents data from different
smartphone orientations in a new space whose orientation is

independent of the smartphone and aligned with gravity and
the direction of motion. In this way, a user can place his

smartphone in whatever position they want, mitigating the
problem of different position and rotations of the

smartphone, as we will see in Sec VI.

Our last block consists of a data-centering operation that

centers the signal among the y-axis and is used only as input

for the Convolutional Layer. The reason for this choice is
apparent in Sec. VI. As reported in [2], time series centering

standardizes the input data, making the task for CNN easier.
Data normalization must be avoided because it does not help

since it significantly distorts time series shape, removing
magnitude information critical for activities differentiation.

After the preprocessing pipeline, we adopt a novel

learning framework. It is composed of CNN augmented with
features coming from the code of an autoencoder. As

discussed in [2] CNNs learns filters that are applied to small
sub-regions of the data, and therefore they can capture local

data pattern and their variations. Additionally, due to a small
number of connections and high parallelis m, the amount of

computations and running time of CNNs is significantly

lower compared to another deep learning algorithm. Such a
model is perfect for real-time HAR applications, even in a

constrained environment like s martphones. The only
drawback of CCNs is that they fall behind in capturing the

global properties of the signal. In [2], authors resolve this
problem by augmenting CNNs with basic statistical features.

But instead of what was done in this latter work, where they
used a few hand-made parts, we decided to opt for

automatically extracted features. These are created by an

autoencoder which should provide a more robust
representation of information. As an implication, we can

train the autoencoder separately and then use the trained
model in combination with CNN.

IV. SIGNALS AND FEATURES

A. Dataset & Measurement Setup

Many datasets are available for this type of application in

literature: [8], [9], [12], [13]. However, there are nontrivial
problems in real-world applications: above all, the

environment is not controlled. So we should be capable of
dealing with technical details such as smartphone orientation

or sensor accuracy, as reported in Sec. III.

 For our application, we decided to use the Heterogeneity
Dataset (HD) [13] described in [3], where data are collected

directly from smartphone sensors. The dataset is composed
of nine users (aged 25-30). All of these users followed a

scripting set of activities. They d id sit, stand, walk, bike, and
stairs up/down while carrying eight smartphones. All eight

phones were placed in a pouch and worn around the waist.

For this study, we had ten people undergo two sessions—one
in a lab with all four devices and one at home with only the

phone. In our case, we were interested only in smartphone-

acquired signals, leaving out from our experiments the
smartwatch evaluations.

We also collected a novel dataset called Oriented Dataset
(OD). This new dataset aims to see whether the model can

generalize well on new unseen users and test how OIT
preprocessing could increase performance in this new

context. This dataset is collected with a single smartphone, at

a sampling rate of 100 Hz in seven different positions: top,
bottom, left, and right are contained in the same way as in

work [3], but instead of a fixed orientation, we rotated the
smartphone inside the pouch to each possible direction. Then

we also perform the same activities with the smartphone held
in hand and in the trouser's pocket to see to what extent the

model can generalize activity recognition in new unseen
positions. In this case, we condensed sit and stand activities

into no activity for two reasons: first, we are not interested in

distinguishing between them, and second, they are made
indistinguishable by OIT.

B. Signal preprocessing

Notation: With x ∈ IRn, we define a column vector as

x=(x1, x2 ,x3 ,..., xn)
T

 Where with we mean

the transpose operator. With ||x||, we mean the L2-norm
operator ||x|| = ∑

 , ∑

 ⁄ the

mean of a vector. With x・ y = x
T
 y, we mean the

inner product of two vectors. With ⃗ We me a n a 3 D

ve ctor ⃗ =(x1 , x2 , x3)
T

 a nd wi th ̂ the cor r esp on ding 3 D
ve rsor ̂ ⃗ ⃗ . For any two 3 D v e ctors , ⃗ and ⃗. We
indic ate th ei r cr oss- pr od u ct as ⃗ × ⃗. We represent with ax,

ay and az the x, y, and z components of the accelerometer

signal, and the gyroscope signal is represented with gx,
gy, and gz . We also define matrices with uppercase and

bold letters. For example, to define a 3 × n matrix
composed of 3 vectors x, y, z ∈ IR

n
 , we use the

notation M = [x, y, z]
T

Linear Interpolation & Down-sampling. As described
in Sec. IV-A, our dataset is composed of signals collected

with different sampling rates from many mobile phones, and
they are usually out of sync due to the SRI. For this reason,

we apply to all signals a simple preprocessing pipeline block

composed of two steps: linear interpolation and down-
sampling. W ith linear interpolation, we project signals with

different sampling frequencies, i.e., 50, 100, and 200 Hz, to a
50 Hz signal, which means we are also applying at the same

time down-sampling. Linear/nearest interpolations are
usually preferred w.r.t. cub ic spline o r s mooth cubic

spline, as investigated in [3], because they typ ically

mit igate the introduct ion of no ise o r art ifacts. In linear
interpo lat ion, the value at t ime t is the piecewise-linear

interpolation, i.e., the linear interpolation between the input
samples ad jacent to t in the sequence o f input sample

timestamps. Let (x0, y0) and (x1, y1) be two known points; the
linear interpolant is the straight line between these points. For

a value x in the interval (x0, x1), the value y along the
straight line is given from the equation of slopes

The linear interpolation on a set of data points (x0, y0),
(x1, y1), . . . , (xn, yn) is defined as the concatenation of linear

interpolants between each pair of data points.

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 813
Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

Orientation Independent Transformation. To project

the signals acquired during an activity in a new space
independent of the rotation of the smartphone, three

orthogonal versors need to be found. We decided to adopt
the technique proposed in [14], although many other works

offered a similar solution as in [15], [16]. In summary, we
must find these three orthogonal versors: vertical ̂ ,

horizontal ̂, and lateral ̂. As the names suggest, the vertical
versor is aligned with the user's torso, pointing up; the

horizontal versor is aligned with the direction of motion,
pointing forward; and the last versor tracks lateral

movements, which is orthogonal to the other two.

Starting with the vertical versor, we need to find where
the gravity vector p⃗ lie in the original space. Although the

gravity vector is constant in stationary conditions, during a

user activity, it continuously changes in the original
coordinate system of the smartphone. Therefore, we can only

consider the gravity's mean direction within the current user
activity. So, to estimate it, we must consider only the

accelerometer signal: p⃗ = (āx , āy , ā z)
T

, and we now

could find the vertical versor with ̂= p⃗/||p⃗||.

This is the first axis of our new space, and we can project
dates onto this new versor to obtain our first component axis.

To do that, we define the acceleration matrix A =
 and the gyroscope matrix G =

 .

Now we could project the data onto ̂ by:

 = A ̂ , gv = G · ̂ (2)

Now we have to find a horizontal plane parallel to the

floor, where the activity motion main ly occurs. We must
remove the av component from the original data to do so. We

represent the accelerometer data on this new plane as M

representing the motion plane. To find M, we have to:

M = A- ̂

In this new plane, we could see that the direction with the

most significant variance of projected data represents the
main direction of motion, i.e., In that direction, the user is

currently performing the activity w.r.t the current smartphone
orientation. By applying PCA [17], we can find the path

along which the variance of measurements is maximized.
This is the horizontal vector h. We now could compute the

horizontal versor ̂ = ⃗⃗ ⃗⃗ , and we are now able to

project our data onto this second new axis:

 = A · ̂ , = G · ̂ (3)

Applying a cross-product between the two last obtained

versors is sufficient to find the last axis , so ̂ = ̂ × ̂. We

are now able to project the data among this new axis:

 = A · ̂ , = G · ̂ (4)

Combining Eq. (2), Eq. (3), and Eq. (4) leads us to the

final accelerometer and gyroscope transformed signals
represented in this new orientation-independent space, which

are
 and

Centering. Our last signal preprocessing block involves
data centering. As proved in [2], this could slightly improve

performance within a CNN-based learning model because
centering the time series makes the task easier for the CNN.

We denote with xc the centered vector of x, i.e

x
c
 = x − x̄ = (x1 − x̄, x2 − x̄, ..., xn − x̄)

T

(5)

Centering is applied for each time window only on

accelerometer data. Thus the new centered acceleration

matrix is:

 = [

]

T
 (6)

C.
 Feature vector

Time windows. When dealing with time-based signals (or

time series in general), we must remember that correlation
between samples occurs and handle this helpful information.

However, in the domain of HAR, even if samples can be
correlated in time, the correlation does not persist over a long

period. In literature, many time window intervals were

experimented with [2], and they discovered that the best time
window interval is from 1s to 2.5s. For this reason, we adopt

a sliding window approach with a fixed window length of
2.5s and a 50% overlap between two successive windows.

Fig. 3. In our proposed learning framework, CL1 is a convolutional-1D

layer, ML1 is a max-pooling layer, FL1 is the fully connected layer which
represents previously extracted features that are concatenated with the
autoencoder features, FL2 and FL3 are thoroughly combined layers

Features . Features are the essential elements every
machine learning algorithm needs to learn something.

Everything fed into a machine learning algorithm can be
considered a feature, but here we use three types of features

targeting different kinds of information.

 Raw features. These enable the model to learn

directly from data and hopefully from its shape to

generalize and classify activities. Raw features are
represented by a 6x125 matrix where rows are

accelerometer and gyroscope x, y, and z dimensions

while columns are samples over time.

 Manual features. Manual features take into account

the statistical mode of the signal and are used in
[2] and[7] with excellent results. We exploit manual

parts like mean, standard deviation, a sum of the
absolute values, and the histogram of each input data

channel computed on local time windows applied

only for an accelerometer signal a. As defined in
[2], we produce a p rimary featu re vector:

 = ̅ ̅ ̅

 ̃ ̃ ̃ ,

,

 ,

 Where for a generic

column vector x = with =

 :

 √
∑ |

 |

 (7)

 ̃
∑ |

 |

 (8)

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 814
Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

∑ √

 (9)

And hx is a column vector that sorts the values of x into ten
equally spaced bins along the x-axis between the minimum

and maximum values of x1 . This led to a manual features

vector of 40 manually extracted features.

 Autoencoder features. Autoencoder features are

automatically ext racted from the signal—the

autoencoder, as described in Sec. V-A can compress
data and learn a good representation of features

keeping only exciting data. The code size we use is
made up of 36 features.

V. LEARNING FRAMEWORK

A. Autoencoder

In this section, we describe the autoencoder model

based on [18], [19], and [20]. An autoencoder is an
artificial neural network used to learn efficient data coding in

an unsupervised manner. An autoencoder aims to learn a
representation (encoding) for a data set by training the

network to ignore signal noise. Given

X=
 As a 6x125 matrix

Fig. 4. (Auto)-encoder structure

and x as the column vector 750x1 obtained by flattening X,

we can define the autoencoder in two blocks. The first block
is the encoder which is a function of the input:

 () σ((x)+) (10)

 (x)=ReLU(x+) (11)

Where is a vector of and Which are the weight
matrix and the bias vector for layer i. We can derive y =

(x) as the output of this block. The second block is the
decoder, where the input is reconstructed back starting from

the code obtained by the encoder

 (y) σ((y)+ (12)

 (y)=ReLU(y+) (13)

T us, e reco s ruc e pu s z gθ(y). We o

minimize the distance between x and z w.r.t, a distance
measure with a loss function like MSE.

The main goal of the autoencoder for this application is
to extract valuable representations of the input signal in a

few features, and this is done by looking at the autoencoder's

code, i.e., the output of the encoder block:

Φe y (14)

The autoencoder follows the structure reported in Fig. 4
and is based on a Neural Network architecture. The encoder

is built with an input layer of 6x125 neurons flattened into a
vector 750x1, one hidden layer with 150 neurons and ReLU

activation function, and an output layer, i.e., the code, of 36

neurons with a sigmoid activation function. The decoder
replicates the exact structure of the encoder but is reversed,

where the activation function on the output layers is the
linear activation, i.e., the identity.

B. Convolutional Neural Network

The final CNN architecture proposed in this work is

shown in Fig. 3. We decided to start with the architecture
presented in a position [2]. We tried to improve it by

augmenting the CNN with the encoder-extracted features.
CNN architecture is compelling when dealing with images,

but they were proven to be good feature extractors for

motion data. A CNN is composed of essentially two parts:
the first one is in charge of extracting features performing a

dimensionality reduction over the input data through a series
of convolution and max pooling layers, and the second part

of the CNN is responsible for giv ing the final c lassification
with usually a single fully-connected layer. Orig inal data

collected from smartphone sensors are preprocessed
accordingly to what was previously described in Sec. III. Our

input matrix presented to our CNN is the matrix

X=

 Formed by accelerometer

and gyroscopes signals, linearly interpolated at 50
samples/second per channel, with a fixed time window of

2.5s, with OIT and data centering. Note that this matrix has a
dimension n × 6 because TensorFlow Convolutional 1D

Layers work with input dimension of (batch_size, samples,

channel).

In detail we have the following stacked

layers(CL=Convolutional Layer, ML=Max-pooling Layer,
FL= Fully-connected Layer):

 CL1: The first convolutional layer performs a

Convolution 1D over the input signal. It is composed of

196 filters of s ize (1×16). Since convolution is defined

over all the input channels, we also capture the relation

between accelerometer and gyroscope signals in this

layer. The stride is set to 1, and the padding is

co f gure s “s me” to have the same output dimension

as the original one. After the convolution operation, we

apply a ReLU (x) = max(0 , x) activation function to

learn the non-linear correlation between signals and

extract richer features. Furthermore, even if we are

dealing with a small architecture, the ReLU activation

function could prevent vanishing gradient problems, is

less prone to overfitting since it induces the sparsity in the

hidden units, and is extremely fast to compute, making it

perfect when dealing with low computational resources

[2].

 ML1 : After the convolutional layer, a max-pooling

or average-pooling layer is usually applied to reduce
and summarize the obtained representation. We

decided to use a max-pooling layer of size (1 × 4),
decreasing by four times the original input shape.

We c ll s e fe ures represe o Φc.

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 815
Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

 FL1: After the convolutional layer and the max-

pooling layer, the output of this layer is flattened into
6272 neurons. At this stage, we decided to

co c e e e e co er e r c e fe ures Φc

 e Co volu o l o es me Φc, cre g our

exclusive features vec or Φ that is

presented to the final fully- connected layers to
perform the classification.

 FL2-3: These final layers comprises 64 and 6 dense
neurons, respectively. These two last layers are used

to perform the classification of the activity. For the
FC2, we use the ReLU activation function, and for

the final category, we apply the soft-max activation

function, which computes probability distribution
over the predicted classes.

As for optimization techniques, we decided to use
dropout and -regularizat ion. These latter techniques are

commonly used in these architectures, yielding better

performance in the test set and commonly in generalization
capabilities, preventing overfitting. We apply a dropout rate

of 0.05 and an -regularization of 5 to the FL2 layer. We
have tried different hyperparameter values for these two

techniques without substantial changes in classification
performance on the test set. Finally, the network parameters

are optimized using Adam: a modification of stochastic
gradient descent incorporating Momentum. Finally, the

network is trained to min imize the Categorical cross -entropy
loss function.

VI. RESULT

A. Heterogeneity Dataset (HD)

In this section, we evaluate performances between

previous works and different model architectures and the
influences of the preprocessing techniques applied here.

Similar to what was done in [2], we carried out from the HD

dataset some representative users to test the model and then
used the remaining ones to train the model. In this case, we

selected users a and b since we found that they are very
representative of all others. The proposed models tend to be

less precise with user a and more accurate with user b. This
mainly depends on the user's style in walking, doing stairs,

and so on. This way, we can compare results with other

works that evaluate unseen users' performances.

In this training and test set settings, we evaluate the best

hyper-parameters and results for the models, excluding OIT
preprocessing block, since this dataset was collected with a

fixed orientation. sit and stand activities are included. The
rest of preprocessing blocks are enabled unless otherwise

specified.

TABLE I. HD CLASSIFICATION RESULTS WITH DIFFERENT

FEATURES OF CNN AUGMENTATION AND DATA PREPROCESSING. T HE

T ESTS ARE MADE WITH OUR PROPOSED ARCHITECTURE, LINEAR

INTERPOLATION AND DATA CENTERING, 196 (1X16) FILTERS, MAX-POOL

(1X4), 64 FULLY CONNECTED NEURONS, A DROPOUT RATE OF 0.05, L2-
REGULARIZATION OF 5E−5 AND ADAM LEARNING RATE OF 2E−5.

Method Accuracy Precision Recall F1-

Score
CNN+No
centering

77.0 78.0 75.8 76.8

CNN+No
centering+ Manual
F.

75.6 76.8 73.9 75.3

CNN+centering+ 86.2 86.9 70.2 77.6

Manual F.

CNN+No
centering+

Encoder F.

89.2 88.9 86.1 86.1

 Autoencoder. We performed a grid search to search for

the best autoencoder model hyper-parameters. Results are
reported in Tab. II, where values that perform well on the

validation dataset are written in bold. The best hyper-
parameters model used to be the one with a relatively small

code size: from 24 to 36 features which is also a good thing

as we do not want the autoencoder to learn the identity but
only to keep useful information. In these settings , we get an

MSE of 0.87.

TABLE II. GRID-SEARCH FOR BEST HYPER-PARAMETERS ON

AUTOENCODER

Hyper-Parameter Values

Code size

Batch size
epochs

{2,3,4,5,6,12,18,24,30,36,42,48,54,60,
72}
{32,128)}
{150,200}

Even if the primary goal for this autoencoder is to

automatically extract features from the signal for the direct
CNN model, we also implement two simple classifiers to use

the autoencoder's feature and check their effectiveness
directly.

The first is a K-Nearest Neighbors (KNN) clustering
algorithm, and we perform clustering on the encoder's code.

The idea is that the autoencoder should extract relevant
features that may be similar class by class. We fine-tuned

KNN parameters with a grid search, looking for the best

values of distance measure and several neighbors. Tab. III
shows the values. We select the Euclidean distance measure

and five as the number of neighbors. In this case, we
obtained an accuracy of 76.2%. From the grid search on

KNN, we surprisingly noticed that performances do not vary
significantly among different hyper-parameters: most results

are less than 5%, far from the best. This may indicate the

maximum capability of this autoencoder model, so to obtain
better performances, we have to add complexity to the

model.

TABLE III. GRID-SEARCH FOR KNN CLASSIFIER

 Hyper-parameter Values
Distance measure

Number of Neighbors

{euclidean, manhattan, chevy-

shev, Minkowski, standardized
euclidean, mahalanobis}

{4,5,6,7,8}

 The second classifier instead is based on a Feed Forward

Neural Network (FFNN). The simple architecture consists of
two dense layers of 100 neurons, each with 0.1 dropouts , and

a ReLU activation function. At the same time, the last is a
thick layer with several neurons equal to the number of

classes and soft-max activation function. The network is

trained with Adam optimizer to minimize the categorical
cross-entropy loss function. In this case, we obtained an

accuracy of 81.8%.

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 816
Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

CNN Network. We first test how several convolutional

filters and dense neurons in CL1 and FL2 will influence

classification performances with data centering and

manually extracted features. The results are presented in

Tab. IV We ch ose 19 6 co nvolut ional fil ters and 6 4 de nse

neurons thanks to its balance between accuracy and F1-

Score performances, obtaining 86.2% and 77.6%,

respectively.

To better appreciate how our preprocessing blocks affect

overall model performances, we also try to disable or enable

some of them. In Tab. I, we reported our obtained results

from experiments. We see that augmenting the CNN with

manually extracted feature when data are not centered leads

to no significant change in performances; instead, the model

obtained nearly 10% more accuracy and precision metrics

when also enabling data centering preprocessing with

manual features augmented CNN. This proves the benefits

of data centering stated previously.

TABLE IV. HYPER-PARAMETERS SELECTION USING HD RESULTS

WITH DATA CENTERING AND MANUAL FEATURES AUGMENTED CNN

CNN Filters FC2 Neurons Accuracy F1-Score

196 1024 84.6 75.3

196 512 86.1 75.7
196 64 86.2 77.6

96 1024 82.8 69.9

96 512 84.4 73.7
96 64 89.0 73.0

48 1024 80.0 79.4

48 512 83.7 74.9

48 64 84.0 72.3

However, We could not reach the same performances
presented in [2], where the authors obtained an accuracy of

97.6% in the same settings. These empirically confirm that

the performances of state-of-the-art models trained with one
type of sensor are worse when dealing with the heterogeneity

of smartphone sensors. Moving on, augmenting the CNN
with the encoder feature increments the model performances,

meaning that encoder features are more robust than manual
features, as exp lained previously. To compare our best

results in this setting with the ones presented in [3], we
decided to perform their Leave-one-user-out cross-validation

evaluation, consisting of testing the model with data from

one user and training with data from all the others in a cross -
validation fashion and then averaging the obtained results.

Fig. 5. CNN confusion matrix

 We obtained an average F1- score of 85.8% in this
evaluation set, beating their best model result of nearly 10%

more in the F1-Score metric. This also proves that using

users a and b to do our evaluation is a good compromise of
the real Leave-one-user-out cross-validation evaluation

performances, Since we obtain nearly the same results
(90.2% instead of 89.2% in accuracy and 85.8% instead of

86.1%), a confusion matrix in this latter setting is reported in
Fig. 5. We could see that the model performs nicely overall

in all the considered d activities, with some difficult ies

distinguishing between stand and sit and walk with stairs
activities.

B. Oriented Dataset (OD)

With this newly collected dataset, we want to test our

models' performance in an actual use case scenario, where
smartphones could be placed in different positions and

orientations. In this case, we trained the models with the
entire HD training set and then used the OD as a test s et. It is

important to remember that in this case, we apply OIT, so we
condensed HD's sit and stand activities into a one class no

activity category.

TABLE V. AUTOENCODER LOSS IN DIFFERENT SCENARIOS

Scenario Loss(MSE)
HD + OIT + OD validation
HD + OIT + OD validation(allpos)

HD + OD validation

0.75
0.82

10.42

Autoencoder. As Tab. V confirms, an excit ing result is

that OIT is necessary when dealing with different
orientations. For example, without OIT, we can see that the

autoencoder trained and tested on the same data goes from
0.75 to 10.42 MSE, which is more than ten times worse.

Furthermore, hand or pocket-up/down data do not inflate the

loss too much. This is good because it indicates that the
autoencoder is producing robust features.

Tab. VI and Tab. VII show KNN and FFNN evaluation
for the best autoencoder with 36 features and the two

classifiers with hyper-parameters selected in Sec. VI-A.
These results indicate that KNN is more stable and not

influenced by the sensor's position/orientation w.r.t. FFNN.

Also, the two models preserve evaluation order: on pouch,
the position gets the best results on both models, while the

worse position hand+pocket, as we expect.

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 817
Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

TABLE VI. KNN EVALUATION ONTO OD BETWEEN SMARTPHONE

POSITIONS (POUCH LEFT/RIGHT/T OP /BACK, HAND AND POCKET-
UP /DOWN, ALL POSITIONS)

Positions Accuracy Precision Recall F1-score

Pouch 80.1 86.4 80.7 79.0

Hand+Pocket 79.5 83.7 79.5 79.6

All 80.0 83.8 79.1 78.2

TABLE VII. FFNN EVALUATION ONTO OD BETWEEN SMARTPHONE

POSITIONS (POUCH LEFT/RIGHT/T OP /BACK, HAND AND POCKET-
UP /DOWN, ALL POSITIONS)

Positions Accuracy Precision Recall F1-score

Pouch 74.4 84.7 74.4 74.8

Hand+Pocket 67.8 78.0 67.8 70.0

All 69.9 81.3 69.9 72.4

 CNN Network. Combin ing autoencoder features into the
CNN, we were able to reach better performances w.r.t the

simpler KNN and FFNN previously presented classifiers. For
the hand+pocket new positions, we noticed a performance

drop of nearly 15%, but given the complexity of this new
unseen context, we are pretty satisfied with the obtained

results. As Tab. 8 confirms, the final proposed learning

strategy with smart data preprocessing led to good results
even with new problem settings that nearly match real use

case scenarios. We also tried to disable OIT in the CNN
model, obtaining a drop in performances by almost 45% for

all metrics considered. This demonstrates that OIT is an
extremely useful preprocessing technique for autoencoder

and CNN models.

TABLE VIII. CNN CLASSIFICATION COMPARISONS ONTO OD BETWEEN

SMARTPHONE POSITIONS (POUCH LEFT/RIGHT/T OP /BACK, HAND AND

POCKET-UP /DOWN, AND ALL POSITIONS).

Positions Accuracy Precision Recall F1-

Score
Pouch 85.3 92.0 73.8 81.9

Hand+Pocket 70.5 79.5 63.0 70.2

All 78.0 84.0 69.0 75.7

VII. CONCLUSION REMARKS

This study presents "in-the-wild" HAR solution for
mobile fitness apps. Dealing with considerable heterogeneity

and real-world circumstances where a smartphone can be
positioned and angled in any way is difficult. Linear

interpolation, orientation-independent transformation, and
data centering in a preprocessing pipeline can reduce HAR

impairments caused by these difficulties. CNN was one of

the most promising methods for HAR, using automatic
feature extraction and classification. The proposed work

outperforms the original Heterogeneity Dataset work by
enhancing CNN with robust characteristics like the encoder

part of an autoencoder. It is also shown also showed that an
orientation-independent transform is necessary to deploy

models trained with controlled datasets in real-world

contexts with promising outcomes.

In future studies, this model may be tested with a more

demanding dataset that includes persons of varying weights,
heights, nationalities, and activity paths . It might also be

tested with people wearing different shoes and apparel. This
work can also integrate with user locations like cars, buses,

trains, planes, etc. This study has no opportunity to test

open-set categorization approaches, which reject unknown or

unobserved behaviors. The proposed algorithm sought to

predict learned behaviors even when the user was doing
other things with his smartphone using a smartphone app.

This research work has many issues, including poorly
optimized NVIDIA Ubuntu OS drivers . Bad GPU memory

management crashed the testing computer. When training the
model with the same hyper-parameters numerous times, the

pre-fetching TensorFlow dataset feature gives us extremely

varied model metrics outcomes. After deactivating the
option, the system delivered comparable results with the

same hyperparameters. Replicating the existing findings
from previous research works was tough because the

outcomes didn't specify model hyper-parameters and training
parameters.

VIII. REFERENCE

[1] H. Blunck, N. O. Bouvin, T. Franke, K. Grønbæk, M. B. Kjaergaard,
P. Lukowicz, and M. Wü stenberg, "On heterogeneity in mobile
sensing applications aiming at representative data collection," in
Proceedings of the 2013 ACM conference on Pervasive and
ubiquitous computing adjunct publication, pp. 1087–1098, 2013.

[2] A. Ignatov, "Real-time human activity recognition from
accelerometer data using convolutional neural networks," Applied
Soft Computing, vol. 62, pp. 915–922, 2018.

[3] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B.
Kjærgaard, A. Dey, T. Sonne, and M. M. Jensen, "Smart devices are
different: Assessing and mitigatingmobile sensing heterogeneities for
activity recognition," in Proceedings of the 13th ACM conference on
embedded networked sensor systems, pp. 127–140, 2015.

[4] J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, and C. Xu,
"Cmt: Convolutional neural networks meet vision transformers," in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12175–12185, 2022.

[5] J. Yun, D. Jiang, Y. Liu, Y. Sun, B. Tao, J. Kong, J. T ian, X. Tong,M.
Xu, and Z. Fang, "Real-time target detection method based on
lightweight convolutional neural network," Frontiers in
Bioengineering and Biotechnology, vol. 10, 2022.

[6] K. Frank, M. J. Vera-Nadales, P. Robertson, and M. Angermann,
"Reliable real-time recognition of motion related human activities
using mems inertial sensors," in Proceedings of the 23rd International
Technical Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS 2010), pp. 2919–2932, 2010.

[7] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, "A
public domain dataset for human activity recognition using
smartphones.," in Esann, vol. 3, p. 3, 2013.

[8] "Human activity recognition using smartphones data set."
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+
Using+Smartphones.

[9] "Wisdm's activity recognition using smartphones data set."
https://www.cis.fordham.edu/wisdm/dataset.php.

[10] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, "Deep
learning for sensor-based human activity recognition: overview,
challenges and opportunities," arXiv preprint arXiv:2001.07416,
2020.

[11] Y. Vaizman, K. Ellis, G. Lanckriet, and N. Weibel, "Extrasensory
app: Data collection in-the-wild with rich user interface to self-report
behavior," in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pp. 1–12, 2018.

[12] "The extrasensory dataset: A dataset for behavioral context
recognition in-the-wild from mobile sensors."
http://extrasensory.ucsd.edu/.

[13] "Heterogeneity activity recognition dataset."
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+
Recognition.

[14] M. Gadaleta and M. Rossi, "Idnet: Smartphone-based gait recognition
with convolutional neural networks," Pattern Recognition, vol. 74, pp.
25–37, 2018.

[15] K. Kunze, P. Lukowicz, K. Partridge, and B. Begole, "Which way am
i facing: Inferring horizontal device orientation from an accelerometer
signal," in 2009 International Symposium on Wearable Computers,
pp. 149–150, 2009.

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 818
Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

[16] A. Henpraserttae, S. Thiemjarus, and S. Marukatat, "Accurate activity
recognition using a mobile phone regardless of device orientation and
location," in 2011 International Conference on Body Sensor
Networks, pp. 41–46, 2011.

[17] C. R. Rao, "The use and interpretation of principal component
analysis in applied research," Sankhya¯: The Indian Journal of
Statistics, Series A, pp. 329–358, 1964.

[18] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and
L. Bottou, "Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion.,"
Journal of machine learning research, vol. 11, no. 12, 2010.

[19] F. Gu, K. Khoshelham, S. Valaee, J. Shang, and R. Zhang,
"Locomotion activity recognition using stacked denoising
autoencoders," IEEE Internet of Things Journal, vol. 5, no. 3, pp.
2085–2093, 2018.

[20] X. Gao, H. Luo, Q. Wang, F. Zhao, L. Ye, and Y. Zhang, "A human
activity recognition algorithm based on stacking denoising
autoencoder and lightgbm," Sensors, vol. 19, no. 4, p. 947,2019

Proceedings of the 7th International Conference on Trends in Electronics and Informatics (ICOEI 2023)
IEEE Xplore Part Number: CFP23J32-ART; ISBN: 979-8-3503-9728-4

979-8-3503-9728-4/23/$31.00 ©2023 IEEE 819
Authorized licensed use limited to: University of Szeged. Downloaded on September 17,2024 at 21:07:46 UTC from IEEE Xplore. Restrictions apply.

